Exercise 19

Solve the initial-value problem.

$$
9 y^{\prime \prime}+12 y^{\prime}+4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad \frac{d y}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
9\left(r^{2} e^{r x}\right)+12\left(r e^{r x}\right)+4\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
9 r^{2}+12 r+4=0
$$

Solve for r.

$$
\begin{gathered}
(3 r+2)^{2}=0 \\
r=\left\{-\frac{2}{3}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-2 x / 3}$ and $x e^{-2 x / 3}$. By the principle of superposition, then,

$$
y(x)=C_{1} e^{-2 x / 3}+C_{2} x e^{-2 x / 3} .
$$

Differentiate the general solution.

$$
y^{\prime}(x)=-\frac{2}{3} C_{1} e^{-2 x / 3}+C_{2} e^{-2 x / 3}-\frac{2}{3} C_{2} x e^{-2 x / 3}
$$

Apply the initial conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
& y(0)=C_{1}=1 \\
& y^{\prime}(0)=-\frac{2}{3} C_{1}+C_{2}=0
\end{aligned}
$$

Solving this system of equations yields $C_{1}=1$ and $C_{2}=2 / 3$. Therefore, the solution to the initial value problem is

$$
y(x)=e^{-2 x / 3}+\frac{2}{3} x e^{-2 x / 3} .
$$

Below is a graph of $y(x)$ versus x.

